If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+8x-380=0
a = 1; b = 8; c = -380;
Δ = b2-4ac
Δ = 82-4·1·(-380)
Δ = 1584
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1584}=\sqrt{144*11}=\sqrt{144}*\sqrt{11}=12\sqrt{11}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-12\sqrt{11}}{2*1}=\frac{-8-12\sqrt{11}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+12\sqrt{11}}{2*1}=\frac{-8+12\sqrt{11}}{2} $
| 81x^2+2=146 | | 5x+30=6x+x^2 | | 5(d+7)=100 | | x+2x+x-20=292 | | 4(v-75)=14 | | 4z/7+4=1 | | 4z/7=4=1 | | 4(3x-20/8=4 | | X/3=y*(7/8) | | X/2=y-2 | | 11x+8=13x-2 | | 7x^2+3x-124=0 | | m∠1=20 | | 2n-6=2(n+2)-10 | | 0.5h=6 | | x2+12x-11=7x-8 | | x2-10x=56 | | 5-2(x-1)=4(3-x)-2x | | 4x−1/2=x+3/4 | | 4x-31=12 | | x+3x=3,2 | | (3x-12)*2=6 | | 20=-x^2-12x | | x3+3x^2-490=0 | | x^2+3x^2-490=0 | | x+0.5*x=33 | | 3c=2c+4c | | 5(2b=8) | | 2x-1/7=7/3 | | 5x-2=9-3x | | 5x-3=9-3x | | 5×4-8=2x |